NMR tensors in planar hydrocarbons of increasing size.
نویسندگان
چکیده
(13)C nuclear shielding and (13)C-(13)C spin-spin coupling tensors were calculated using density functional theory linear response methods for a series of planar hydrocarbons. As calculation of the spin-spin coupling is computationally demanding for large molecules due to demands placed on basis-set quality, novel, compact completeness-optimized (co) basis sets of high quality were employed. To maximize the predictive value of the data, the convergence of the co basis sets was compared to well-known basis-set families. The selection of the exchange-correlation functional was performed based on the available experimental data and coupled-cluster calculations for ethene and benzene. The series of hydrocarbons, benzene, coronene, circumcoronene and circumcircumcoronene, was chosen to simulate increasingly large fragments of carbon nanosheets. It was found that the nuclear shielding and the one-, two-, and three-bond spin-spin coupling constants, as well as the corresponding anisotropies with respect to the direction normal to the plane, approach convergence as the number of carbon atoms in the fragment is increased. Predictions of the investigated properties can then be done for the limit of large planar hydrocarbons or carbon nanosheets. From the results obtained with a judicious choice of the functional, PBE, and co basis close to convergence, limiting values are estimated as follows: sigma = 54 +/- 1 ppm [corresponding to the chemical shift of 134 ppm with methane (CH(4)) as a reference], Deltasigma = 207 +/- 4 ppm, (1)J = 59.0 +/- 0.5 Hz, Delta(1)J = -1.5 +/- 0.5 Hz, (2)J = 0.2 +/- 0.4 Hz, Delta(2)J = -4.6 +/- 0.2 Hz, (3)J = 6 +/- 1 Hz, and Delta(3)J = 3 +/- 1 Hz.
منابع مشابه
DFT Study of NMR Shielding Tensors and Thermodynamic Properties on Pyrene and its Derivatives
Emissions from fossil fuel combustion pose a serious threat to public health and =pose the need for animproved monitoring of polycyclic aromatic hydrocarbons (PARS), a major class of persistent organicpollutants. For this purpose the present study reports an investigation of the electronic structure of Pyrene byuse of different chemical models We also made a comparison between different chemica...
متن کاملTheoretical investigation of the implicit effects water molecules and resonance interactions on structural stability and NMR tensors of hallucinogenic harmine by density functional calculations
Abstractl Density functional theory (DFT) was used to investigate the effects of intra-moecular interactions and implicit water molecules on the relative stability and the NMR shielding tensors of hallucinogenic harmine in the monomeric and dimeric states. Results represented that the relative stability and the NMR shielding tensors are dependent on the resonance interactions and chemical envir...
متن کاملAn ab initio quantum chemical investigation of TOMS nmr SHIELDING TENSORS IN Adenine-thymine, Adenine-uracil, Guanine-Cytosine & uracil-quartet: comparison between theoretical and experimental results
We have evaluated the NMR shielding tensors for A:T,G:C,A:U in Watson-crick, and U-quartet. We have computed NMR shielding tensors at B31YP level by using 6-31G(d) basis set. We have compute anisotropy and asymmetry in A:T,G:C,A:U and U-quartet. The NMR shielding tensors were calculated using the GIAO method. The natural bonding orbital analysis (NBO) were performed. NBO calculation have been ...
متن کاملAb Initio Quantum Chemical Studies of 15N and 13C NMR Shielding Tensors in Serine and Complexes of Serine- nH2O: Investigation on Strength of the CαH…O Hydrogen bonding in the Amino Acid Residue.
In this paper, the hydrogen bonding (HB) effects on the NMR chemical shifts of selected atoms in serineand serine-nH2O complexes (from one to ten water molecules) have been investigated with quantummechanical calculations of the 15N and 13C tensors. Interaction with water molecules causes importantchanges in geometry and electronic structure of serine.For the compound studied, the most importan...
متن کاملThe effects of isomerism and side chain mutation on binding energy and NMR/NQR tensors of L-methionylasparagine and L-asparagylmethionine
Density functional theory methods(DFT) and natural bond orbital (NBO) analysis were used to investigate the effects of isomerism and side chain mutation at a microscopic level on the stability, binding energy and NMR/NQR tensors of structural isomers, L- methionylasparagine (Met-Asn) and L- asparagylmethionine (Asn-Met) in the gas phase. The results represented that the isomerism and side chain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 11 48 شماره
صفحات -
تاریخ انتشار 2009